The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain
نویسندگان
چکیده
Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.
منابع مشابه
Bioactivation of 1,1-dichloroethylene to its epoxide by CYP2E1 and CYP2F enzymes.
1,1-Dichloroethylene (DCE) exposure to mice elicits lung toxicity that selectively targets bronchiolar Clara cells. The toxicity is mediated by DCE metabolites formed via cytochrome P450 metabolism. The primary metabolites formed are DCE epoxide, 2,2-dichloroacetaldehyde, and 2-chloroacetyl chloride. The major metabolite detected is 2-S-glutathionyl acetate [C], a putative conjugate of DCE epox...
متن کاملThe role of P-glycoprotein in the bioactivation of raloxifene.
Drug transporters have been shown to alter drug metabolism. Similarly, bioactivation of drugs may also be altered by drug transporters. The aim of this work was to examine the role of P-glycoprotein (Pgp) in the bioactivation of a Pgp substrate, raloxifene, and a non-Pgp substrate, naphthalene. To evaluate the extent of bioactivation, covalent binding was measured. In both freshly isolated and ...
متن کاملSaturation toxicokinetics of thioacetamide: role in initiation of liver injury.
Thioacetamide (TA), a potent centrilobular hepatotoxicant, undergoes a two-step bioactivation mediated by microsomal CYP2E1 to TA sulfoxide (TASO), and further to TA-S,S-dioxide (TASO2), a reactive metabolite that initiates cellular necrosis. Our earlier studies showed that bioactivation-mediated liver injury of TA is not dose-proportional. The objective of this study was to examine whether inc...
متن کاملPulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1.
Pulmonary cytotoxicity induced by trichloroethylene (TCE) is associated with cytochrome P450-dependent bioactivation to reactive metabolites. In this investigation, studies were undertaken to test the hypothesis that TCE metabolism to chloral hydrate (CH) is mediated by cytochrome P450 enzymes, including CYP2E1, CYP2F, and CYP2B1. Recombinant rat CYP2E1 catalyzed TCE metabolism to CH with great...
متن کاملCytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats.
Earlier studies have shown highly exaggerated mechanism-based liver injury of thioacetamide (TA) in rats following moderate diet restriction (DR) and in diabetes. The objective of the present study was to investigate the mechanism of higher liver injury of TA in DR rats. Since both DR and diabetes induce CYP2E1, we hypothesized that hepatic CYP2E1 plays a major role in the bioactivation-based l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017